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1. A Simple Discrete Model
We model our little(?) epidemic as a simple Markov process. Supposed are three classes of

people: Those who are Susceptible to the infection are in class S, the already Infected ones are
in class I, and the Removed ones are in class R. Class R comprises the ones recovered from the
infection as well as the deceised ones. We do not consider birthes or deaths from other causes than
the infectuous disease we are dealing with.

We set up a matrix of transition propabilities between the classes,

M =

0@ 1− pS2I 0 0
pS2I 1− pI2R 0
0 pI2R 1

1A: (1)

There can be no transfers from class S directly to class R, as can be no transfers from class I back
into class S. Once a person has entered class R, she can luckily or sadly never escape it again. All
transition propabilities refer to a fixed time period T. Here is an example matrix:

M =

0@ 0.99 0 0
0.01 0.96 0
0 0.04 1

1A:
This means that during each period T, one percent of the S-persons will be infected, and from the
infected persons four percent will recover or die. We also determine an initial state of our system,

v0=( S0 I0 R0 )
T ;

and give an example for this too:

v0=( 99.9 0.1 0 )T :

In that way the chosen numbers can easily be interpreted as percentages. The dynamics can now
be stated straightforwardly.

vn=M:vn−1; n=1; 2; : : : (2)

and we see the resulting time behaviour in the plot below.

With this simple framework, one may play around and compare the curves to available empirical
data.

2. Further Musings
Explicit functions for S(n)=vn;0, I(n)=vn;1, and R(n)=vn;2 can be derived from the difference

equations (2) using z-transform. Time continuous funtions can then be formulated by using t=nT ,
and the time-derivatives may be used to establish a standard dynamic system in continuous time,
f.i. to be compared to established epidemiological models1. Additional classes may be introduced,
transitions may be allowed that were excluded in �1 etc. This and more is left to the reader.

�. Of course it should read Easy epidemiology. Anyhow at the same time we wish all readers that they may
live through the current coronavirus epidemic without troubles.

1. See f.i. https://de.wikipedia.org/wiki/SIR-Modell.

1



2.1. Extensions
In plots from real data2 or from other models we often observe exponential growth in the

Infected class particularly at the early stages. But we do not see this from our model - the slope of
I(n) is decreasing from the onset. The cause is to be found in our static transition propabilities in
(1), and we may conclude that in reality we do not have these constant transition rates throughout
the devolution of an epidemic. We would have to dynamise the propabilities e.g. by feeding back
the actual values of infected and susceptible portions of a populace3.

pS2I(n) = f(S(n− 1); I(n− 1)); pI2R(n) = g(S(n− 1); I(n− 1));

thus creating a second �layer� of our model. This too is, for the time being, left to the inclined
reader.

2.2. The Long End
Equation (2) describes a linear transformation of the three-dimensional vector space of the vn

onto itself (an endomorphism). It has an eigenvector v1=M:v1 (with an eigenvalue of 1). With
matrix M from equation (1) we get

v1=( 0 0 A )T ;

where constant A=�j=0
2 v0;j stands for �All�. v1 describes a (attractive) fixpoint of the mapping

formed by equation (2). Though reached only in infinite time, once reached the system will never
leave that state. Intuitively that is easily seen too. A class receiving propabilty weight from the
other classes but never feeding back to them, will finally gather the total weight available. All
individuals will finally find themselves in the R class, and the epidemic will have passed through
all of them, leaving them immune to the same infection for all future.

2. See f.i. https://coronavirus.jhu.edu/map.html.

3. The SIR model mentioned in footnote (1) lets I
:

(t) depend on the product S(t)I(t).
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Can there be other such distributions that once arrived at, will persist? By consequence of
what was just said above, we will need a pR2R=1− pR2S<1 for that. So let's change the transition
matrix from equation (1) to

M =

0@ 1− pS2I 0 pR2S
pS2I 1− pI2R 0
0 pI2R 1− pR2S

1A;
or in numbers, to have an example again,

M =

0@ 0.99 0 0.002
0.01 0.96 0
0 0.04 0.998

1A:
0.2 % of the Removed populace will get Susceptible to the infection again. - We keep v0 and
equation (2). Over time our S(n), I(n), and R(n) now look like

,
and our

v1=
A

(pR2S+ pI2R) pS2I+ pI2R pR2S

0@ pI2R pR2S
pR2S pS2I
pI2R pS2I

1A;
or again in the numbers of our example

v1=

0@ 16.0
4.0
80.0

1A:
A constant portion of 4 % of infected population is thus generated by only 0.2 % of already
recovered people getting endangered to be hit again by the infection - all other weights being the
same as in the first model, where the infection completely vanished.

bk, Lahr, 31Mar20
1Apr20 A few minor corrections, mostly concerning style.

28Apr20 Added paragraph 2.2.
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